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Abstract—Door lock is regarded as a critical line of defending the privacy and security of personal areas. However, for inner doors in

environments like factories, existing lockingmechanisms can be poor in user-friendliness and high in cost. For instance,mechanical locks

require carrying keys that inevitably compromise user experiences, while smart locks always require non-trivial sensors. Therefore, inner

doors urgently require a lightweight unlocking scheme that can properly balance user-friendliness, cost, and security. To this end, we

propose HandKeyas a keyless unlocking scheme to supplement existing lock systems. HandKey relies on two principles: the simplicity of

hand knocking doors and the uniqueness of vibration triggered by the knocking force. In other words, a door and a hand knocking it jointly

form a unique physical system that generates hand-dependent and user-specific vibration signatures uniquely representing a user

identity. In designing HandKey, we first analyze the vibrationmechanism behind it and the impacts of gestures and door materials on

vibration signatures. Then we innovatively construct a signal processing and deep learning-based pipeline to extract signatures robust to

variable knocking behaviors for representing user identity. Finally, we implement a HandKey prototype and use extensive evaluation to

demonstrate its security and effectiveness.

Index Terms—Authentication, behavior-independent signature, keyless unlocking, vibration signature

Ç

1 INTRODUCTION

DOOR locksalways play a key role in preventing illegiti-
mate invasion and hence protecting personal security.

However, for environments accommodating multiple
users (e.g., companies or institutes), inner doors are only
applied to restrict personnel activity areas. Therefore, their
dominating requirements for locks are low cost, user-friend-
liness, as well as an adequate security level (in particular,
robustness to theft and counterfeit). Unfortunately, current
unlocking mechanisms often cannot fully meet these
requirements. To illustrate the mismatches between func-
tionalities and requirements, we consider three main

categories of unlocking schemes: i) mechanical key or elec-
tronic card [1], [2], ii) keyless access via passwords or draw-
ing patterns [3], [4], and iii) biometrics-based identity
verification [5], [6].

Category i) requires users to carry physical keys/cards at
all times. As losing and forgetting them inevitably happen in
human daily life, such mechanisms sometimes cause terrible
user experience [7]. In practice, relying on permission man-
agers to recover from this loss is both cumbersome and lack-
ing of timeliness. Most importantly, an illegitimate person
can steal the magnetic stripe or utilize the near-field commu-
nication technology [8] to slinkingly replicate entrance
accessing permission, thus gaining free entrance to sensitive
areas like personal offices. Category ii) aims to bring better
user experiences and security, but the current performance
is far from satisfactory; it demands users to remember
tedious numbers and then manually input them when
unlocking. Since each user often owns not just one but a lot
of accounts (e.g., online banks and instant messaging appli-
cations) entailing distinct passwords, remembering them
becomes a heavy burden. Moreover, password/patterns do
raise security risk as they can be stolen by peeping [3] and
side-channel [9] attacks.

Thanks to its keyless nature (thus the resulting security
and convenience), category iii) has been widely adopted on
smart locks, yet they necessitate multiple non-trivial sensors
to identify user biometrics reliably, resulting in a high cost
and hence not suitable for inner-door locks. For instance,
FaceID [10] demands a structured light system to capture
facial 3D features with flood illuminators, dot projectors,
and an infrared camera, greatly increasing hardware costs.
Qualcomm Fingerprint Sensor [11] leverages non-trivial
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ultrasonic readers to construct accurate fingerprint images
by scanning the pores of a user’s fingers. In addition, recent
proposals [12], [13] leverage vibration signals emitted by
motors in wearable devices to authenticate users: they both
argue that identical vibration waves, after propagating
through arms and fingers, become signatures unique to
individual users. However, requiring user-held devices has
compromised the keyless promise of this category.

Given that existing schemes largely fail to meet the main
requirements for inner-door locks, namely, low-cost, user-
friendliness, and robustness to theft and counterfeit, it is
imperative to look for alternatives. To this end, we plan to
exploit two properties inherent to hand knocking doors, to
fully meet the aforementioned unlocking requirements. On
one hand, knocking on doors by hand is easy to operate for
users, as it has been used for thousands of years as a gesture
to ask a door to be opened. On the other hand, thanks to the
intrinsic differences among human users in bone structure,
muscle distribution, and shape of hands [14], physical con-
tact between hand and door jointly forms a unique system.
Triggered by the knocking force, this system generates
hand-dependent vibration signals unique to individual
users. These two properties have motivated us to ask the
following question: can we employ simple knocking operations
and unique hand-dependent vibration signals to realize an ade-
quate unlocking approach for inner doors?

In response to this question, we specifically leverage the
aforementioned two properties to construct HandKey as a
keyless unlocking scheme in this paper. Basically, HandKey
employs user-specific vibration signatures created by hand
knocking as “keys,” and it verifies signatures after sensing
them via an accelerometer. As illustrated in Fig. 1, a user
knocks on a pre-set knocking area1 to unlock a door. HandKey
adopts an accelerometer to record the induced vibration sig-
natures and then verifies the feature similarity between
newly captured and registered signatures, so as to deter-
mine whether to unlock or not. The adequacy and effective-
ness of HandKey manifest in four aspects:

� HandKey leverages a common accelerometer to
complete data collection, ensuring a low hardware
cost.

� Users need only to execute hand knocking during
authentication, imposing minimal user involvement
and thus being very user-friendly.

� The combination of a hand and door forms a unique
structure, physically guaranteeing the uniqueness of
vibration signatures for authentication purpose.

� The signature generation strongly relies on the struc-
ture of user hands, making it impossible for attackers
to replicate signatures and hence ensuring the secu-
rity of HandKey.

However, implementing HandKey faces several technical
challenges. First of all, though deeming the hand-door as an
oscillator excited by the knocking force is theoretically sound,
the intrinsic properties of this oscillator are unknownwithout
prior knowledge of the mutual interactions within the oscilla-
tor. Second, the knowledge on extracting what effective fea-
tures from the vibration signals to characterize user identity is
also missing. Third, subtle changes in knocking behavior can
lead to varying signatures even from the same hand, so
achieving behavior-robustness is crucial but challenging. To
tackle these challenges, we first analyze the working princi-
ples of the hand-door oscillator and reveal decisive factors
such as mass and spring constant crucial to vibration genera-
tion. We explore the signature variations caused by different
knocking gestures and door materials in a feasibility study,
establishing a foundation for the development of HandKey.
Second, we specifically design a learning-driven signal proc-
essing module to transform original vibration signals into
user identity features; it involves Discrete Wavelet Transform
(DWT) [15] based noise removal and Variational Auto-
Encoder (VAE) [16] feature extraction. Finally,we apply a typ-
ical LeNet [17] network to construct Triplet model [18] for
obtaining behavior-independent signatures robust to user
behaviors; these signatures are taken to drive the authentica-
tion process that compares a new signature with multiple
stored templates associated with an identity and determines
its authenticity via voting.

In summary, our main contributions in designing Hand-
Key are summarized as follows:

� We propose a lightweight keyless unlocking method
HandKey for inner doors; it delivers adequate secu-
rity, smooth user experience, and low cost.

� We analyze the vibration mechanism and key param-
eters of the hand-door oscillator, thereby revealing
the reason for signature uniqueness across users.

� We design a series of strategies for obtaining linear
time-frequency features via PCA and non-linear fea-
tures via VAE, aiming to effectively characterize a
user identity.

� We leverage a LeNet-based network to build a Trip-
let model, in order to extract behavior-independent
vibration signatures robust to variations in knocking
behavior.

� We implement a HandKey prototype and conduct
comprehensive experiments to validate its effective-
ness; The promising results demonstrate that our
method can achieve an accuracy of 97.71%.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces vibration mechanism and investigates the
feasibility of using hand-dependent vibration signals for key-
less door unlocking. Potential attacks and system overview
are presented in Section 3. We elaborate the technical details
in Section 4, and report the implementation and performance

Fig. 1. The usage illustration of HandKey: a predefined knocking area
and three typical knocking gestures.

1. Distance changes between knocking positions and the accelerom-
eter sensor, can directly lead to similarity reduction of vibration signa-
tures generated by the same user. Therefore, we preset a knocking area
on a door to ensure that positions of multiple hand knocks are close to
each other as much as possible.
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evaluation of HandKey respectively in Sections 5 and 6. After
discussing limitations and related works in Sections 7 and 8,
we finally conclude this paper in Section 9.

2 BACKGROUND AND FEASIBILITY ANALYSIS

In this section, we first introduce a simple yet effective
model to characterize vibration generation and propagation.
Then we perform feasibility studies to corroborate the theo-
retical uniqueness of vibration signatures, justifying using
them for authenticating users. Finally, we demonstrate the
behavior impacts on vibration signatures, aiming to con-
cretely motivate our latter design.

2.1 Vibration Mechanism of Hand Knocking Door

When a hand knocks on a door, the force-bearing area (i.e., the
contact area between them) is deformed and thus generates
vibration waves. Vibration generation and propagation
depend on structure properties such as spring constant and
damper coefficient of both hand and door, which jointly
form an oscillator [19]. Therefore, knocking on the same
door by the hand of a certain user should produce user-spe-
cific vibration signatures. More importantly, as the hand
structure parameters such as bone and shape are important
determining factors of this oscillator, it is highly possible
that changes in them may significantly alter the vibration
signature. Therefore, we construct a simple model to reveal
this potential impact (hence the uniqueness of vibration sig-
nature for individual users) in the following.

As a forced spring system [20], the process of vibration
generation in the hand-door oscillator involves two stages:
compression and stretch. In the first stage, the force of hand
waving is exerted on doors, causing the force-bearing area
and hand to squeeze against each other and hence transform-
ing kinetic energy into elastic potential energy. This stage
ends with the force-bearing area deforms to its greatest extent
when the exerted force offsets the resistance of the door
material. In the second stage, the force-bearing area begins to
gradually restore its original state, releasing energy and gen-
erating vibrations. To describe this process, we adopt the
well-known mass-spring-damper model [21]. As shown in
Fig. 2a, the hand-door oscillator can be characterized using
its mass m, spring constant s, and damper coefficient c. In
our case, these parameters are determined by the bone, mus-
cle, and shape users’ hands, making the structure of an oscil-
lator uniquely determined by a user [14]. According to
Hooke’s law [22] and Newton’s second law [23], we formu-
late the relation between the knocking force ft¼0 and the ver-
tical displacement of door surface xðtÞ (i.e., the vibration
signature) as follows:

ft¼0 ¼ maðtÞ þ cvðtÞ þ sxðtÞ; (1)

where aðtÞ and vðtÞ are respectively the acceleration and
speed of the door. Leveraging the physical relation among
acceleration, speed, and displacement [24] allows us to fur-
ther simplify Eqn. (1) as

ft¼0 ¼ m
d2xðtÞ
dt2

þ c
dxðtÞ
dt

þ sxðtÞ: (2)

According to Eqn. (2), the vibration signature xðtÞ is
uniquely determined by parameters m, s, and c given the
knocking force ft¼0. Moreover, as changes in ft¼0 only affect
vibration amplitude, the shape of vibration envelope (mor-
phology) can be regarded as a unique signature.

Vibration signal xðtÞ is generated in the force-bearing area
and then propagates outward through the hand-door oscilla-
tor, which is eventually sensed by an accelerometer fixed on
the door. The propagation process consists of two distinct
parts. On one hand, the signal waveform propagates along a
line (a.k.a. direct path) towards the accelerometer. On the
other hand, vibration waves reaching the medium boundary
can be refected towards the accelerometer and hence form
reflected paths. Though there could be multiple refected paths
caused by various medium boundaries, we only show one
refected path as an example in Fig. 2b for the sake of brevity.
During this process, vibration amplitude continuously
attenuates, which is characterized by the following vibration
attenuationmodel [25]

yðtÞ ¼ xðtÞe�mr; (3)

where m is the attenuation coefficient of medium structure,
and r is the propagation distance between the impact point
and accelerometer. Different door materials may lead to dis-
tinct values of the coefficient m, which in turn affects the
attenuation of xðtÞ during propagating.

2.2 Feasibility Study on Vibration for Authentication

In this section, we conduct a feasibility study to corroborate
the theoretical analysis presented in the previous section. As
illustrated in Fig. 1, we deploy a BU-27135 accelerometer
with a sampling rate of 10 kHz in the bottom position of pre-
set knocking area, for sensing vibration in real-time. Unless
otherwise specified, all users use their right hands with
Gesture� 1 (Fig. 1) to knock on awooden door, and they keep
their hands on the door for about two seconds, for largely
preserving the oscillator structure during the vibration
propagation.

The uniqueness of vibration signatures to represent corre-
sponding user identities is the foundation of our design. To
verify its uniqueness, we first let two users with identical
hand shapes knock on a door five times utilizing the same
gesture and position. Hand shape is measured by three criti-
cal parameters, i.e., length, breadth, and circumference
shown in Fig. 3a, according to a study from NASA [26]. The
signals sensed by the accelerometer are shown in Figs. 3b
and 3c. One may clearly discern the differences between two
time domain waveforms, and the spectral densities of them
also present distinct distributions: one concentrates below
80 Hz while another up to around 200 Hz. Therefore, even
with identical hand shapes, differences in internal structures

Fig. 2. The illustration of vibration generation and propagation.
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such asmuscle tissue and bone, still ensure the uniqueness of
vibration signatures. We further calculate Pearson Correla-
tion Coefficient (PCC) [27] of two arbitrary signatures from
the same user (referred to as Intra-PCC) and across distinct
users (Inter-PCC). PCC is an accurate and effective method
to measure sample similarity. Fig. 3d presents signature sim-
ilarities of 47 users; the minimum Intra-PCC is 0.91 much
higher than the maximum Inter-PCC value at 0.57. These
results confirm that vibration signatures across users can be
correctly classified and hence have potential to effectively
represent user identities.

The long-time stability of vibration signatures is another nec-
essary condition for our design to be practical. To confirm
this stability, we ask users to knock on doors at six regularly
spaced time periods p1; p2; . . . ; p6 during the last three
months. They knock ten times during each period and inter-
vals between adjacent periods are about 15 days. Subse-
quently, to verify the stability of vibration signatures, we
calculate PCCs between signatures (of the same user) col-
lected during p1 those from other periods. As shown in
Fig. 4a, with a three-month time span between p1 and p6, the
average value of Intra-PCCs drops by only 0.05 and still
maintains a large difference from Inter-PCCs. This indicates
that vibration signature, as biometrics, is sufficiently stable
during a long-time period.

The variations in knocking door material may also affect the
vibration signatures, as door is part of the oscillator. To
quantify the impact of door materials, we let users knock on
different types of doors, i.e., wood, aluminum, and zinc
alloy, while each type includes five distinct thicknesses.
Subsequently, we report the average Intra/Inter-PCCs in
Fig. 4b, which indicates a sufficiently wide gap between
Intra- and Inter-PCCs for each material (consisting of one
type with five thicknesses). Therefore, we may safely deem
the door material as having insignificant impact on the

vibration signature, hence it can be neglected in our latter
design.

In addition to the uniqueness confirmed earlier, another
important property of the vibration signature is its non-repli-
cability. In other words, no one can fake the hand of a legiti-
mate user, because many features of a hand (e.g., its bond
structure and muscle) that determine the vibration signa-
tures are intrinsic and hence cannot be replicated even with
sophisticated anatomy. This is in sharp contrast to other bio-
metrics such as fingerprint and iris: they stay on the surface
of human bodies and thus may often be replicated.

2.3 Interference From Knocking Behavior

Except for the inherent structure of hands and doors, the
effects of knocking behavior imposing on final output vibra-
tion signatures should be attached with great importance.
The most obvious is that adjusting knocking gestures can
directly change the whole oscillator structure. To study its
effects, we let users knock on a door using three common
gestures (i.e., Gesture� 1=2=3 in Fig. 1), while each of them
offers the total of thirty vibration signatures. The average
Intra-PCC and Inter-PCC of them in each gesture as dis-
played in Fig. 5. For HandKey, a sufficiently large difference
between Intra-PCC and Inter-PCC indicates that signatures
are unique across users while consistent for the same user.
It is clear that Gesture� 1 performs the best in this sense,
while the other two gestures perform slightly worse but still
offer sufficient discriminability.

By reviewing vibration mechanism, the reasons for per-
formance differences among gestures become clear: the
parameters such as spring and damping coefficients of an
oscillator’s sub-components can impose more impacts on
output vibration signals, when their contact areas become
larger [28]. Gestures having larger force-bearing areas with
door allow the hand structure traits to be more involved in
the oscillator, thereby ensuring the signature uniqueness/
discriminability. Therefore, we recommend users to choose

Fig. 3. An illustration of hand-shape parameters (a). Vibration signatures generated by two human hands while each knocking the door five times (b)
and their frequency domain versions (c). Similarities of vibration signatures among 47 users (d).

Fig. 4. Variations in vibration signature similarity as (a) the time interval
increases from half a month to three months and (b) under three distinct
door materials. Fig. 5. The signature similarity under three common knocking gestures.
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gestures with large force-bearing areas for enhancing signa-
ture uniqueness.

Moreover, we have learnt from Eqn. (2) and (3) that knock-
ing force ft¼0 and distance r, though not affecting the signa-
ture morphology, may still cause inconsistency between
registered and newly sensed signatures of the same user; they
potentially result in a higher false positive or negative rate. To
explore the effects brought by ft¼0, we first ask one user to
knock with three distinct forces (i.e., small, medium, and
large). t-SNE [29] is then leveraged for clustering similar sam-
ples in an adjacent three-dimensional space, thereby visually
analyzing the similarity of these signatures. As illustrated in
Fig. 6a, the strength of ft¼0 slightly changes the distribution
support of the resulting signatures, thereby reducing Intra-
PCCs and causing a higher ratio of rejecting legitimate users.
Moreover, to study the impact of distance deviation on vibra-
tion signatures, we let users knock on four positions, while
the first one is away from others with 0.5 cm, 1 cm, and 1.5 cm
respectively. Fig. 6b displays signature similarity decreasing
to 0.72 as position deviation increases to 1.5 cm; these results
also indicate a potentially higher false positive rate. To main-
tain the performance vibration signature under the above two
factors, we plan to leverage suitable deep learning model to
distill behavior-independent signature robust to these factors,
and we also consider setting a knocking area on the door to
limit force-bearing range and hence confining the position
deviationwithin a tolerable range.

3 POTENTIAL ATTACKS AND SYSTEM OVERVIEW

In this section, we first introduce potential attacks threaten-
ing unlocking security and then present the detailed work-
flow of HandKey.

3.1 Attack Models

We assume that Alice is an attacker who tries to spoof
HandKey, for illegitimately entering Bob’s private space.
Considering the existing approaches and actual scenarios
for compromising identity verification system, Alice enacts
the following attacks:

� Zero-effort Attack. Alice does not master any informa-
tion (e.g., knocking gesture, force, and position)
about how Bob unlocks a door by HandKey. Without
prior knowledge, Alice attempts to unlock the door
by aimless knocking. This type of attack is easy to
operate and hence ordinary attackers can perform it.

� Imitation Attack. We assume that Alice has a chummy
relationship with Bob, thus he/she can stand around
Bob and observe how to use HandKey. Moreover,

Alice records the complete unlocking process through
a latent camera and then practices to imitate Bob’s
knocking behaviors. Finally, Alice relying on this use-
ful information tries to trick HandKey. Imitation
attack is regarded as an effective way to deceive
unlocking schemes that leveraging behavior traits, so
being widely discussed in existing authentication
works [30], [31], [32].

� Side-channel Attack. Alice tries to place an accelerom-
eter in inconspicuous positions to record vibration
signatures when a legitimate user knocking on the
door. He/she then releases captured vibration waves
through adjustable motors to spoof HandKey. This
approach sounds promising yet is short of imple-
mentability. We detailedly explain the reasons for its
invalidation in Section 6.10.

3.2 HandKey Overview

On the basis of running state, HandKey’s workflow (illus-
trated in Fig. 7) can be divided into two major phases: sys-
tem construction and authentication. In fact, both phases
involve almost the same data processing flow, except that
the latter phase executes a comparison between newly cap-
tured user signatures with the registered ones obtained dur-
ing the former phase. Therefore, we focus on discussing the
construction phase, but leave design details to Section 4.

In Vibration Sensing, users knock on the pre-set knocking
area with habitual gestures and forces, for registering identity
signatures. HandKey then detects knocking event and seg-
ments vibration data corresponding to user signature from
original signals, in Knocking Event Monitor andData Segmenta-
tion respectively. Considering user experience, HandKey
allows users to knock with relatively small forces. In this case,
sensed vibration amplitude and signal-to-noise ratio of signa-
ture are both low. Therefore, we design a Discrete Wavelet
Transform (DWT) [15] basedmethod inNoise Removal, to filter
inherent noise caused by electronic components. Subse-
quently, we extract Mel-Frequency Cepstral Coefficients
(MFCCs) [33] based linear fine-grained features in Linear
Time-frequency Feature while relying on Principal Component

Fig. 6. Signature similarity decreasing caused by user behavior changes:
(a) knocking strength and (b) position.

Fig. 7. The workflow of HandKey, including four major modules: vibration
sensing, signal preprocessing, basic feature extraction, and behavior-
independent signature.
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Analysis (PCA) in Dimension Reduction to compress the fea-
ture dimension. Afterward, Variational AutoEncoder (VAE)
[16] based Feature Extractor obtains latent non-linear character-
istics derived fromhand structure. To sumup, linear and non-
linear features respectively and complementarily represent
the basic and latent hand structure attributes from vibration
signals. Finally, as these original features may not well handle
the interference caused by behavior changes, we designed a
LeNet-based Triplet model to extract behavior-independent
signatures and hence ensure the robustness of HandKey.

4 HANDKEY DESIGN

In this section, we detailedly introduce the technicalmodules
of HandKey, mainly involving knocking event detection,
noise data removal, basic feature extraction, and obtaining
behavior-independent signature.

4.1 Signal Preprocessing

4.1.1 Knocking Detection and Data Segmentation

Detecting and segmenting vibration signal of each knocking
event is the premise of further identity signature extraction.
We observe that there is bursting energy fluctuation (i.e.,
absolute amplitude differences between adjacent samples)
brought by hand knocking door as shown in Fig. 8a. There-
fore, we leverage a fluctuation threshold-based sliding win-
dow to detect knocking event occurrence relying on [34]. The
sensed vibration data from idle/non-knocking period is
denoted as yidleðtÞ. The mean �y and standard deviation s of its
energy fluctuation sequence can be calculated as follows:

�y ¼ 1

T

XT�1

t¼0

yidleðtþ 1Þ � yidleðtÞj j; (4)

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT�1

t¼0

yidleðtþ 1Þ � yidleðtÞj j � �yð Þ2
vuut ; (5)

where T is the number of samples. Relying on the analysis of
energy fluctuation distribution, we discover appearance time
ta of knocking event accompanying by two markers: the first
sample’s value in sliding window is larger than �yþ 3s; the
averaging amplitude of all samples is greater than 5.8�y. In
HandKey, we set window size as 600 ms that typically larger
than time duration of signatures and its sliding step is 20 ms.
Fig. 8b presents the result of data segmentation, and starting
times ta of knocking events aremarkedwith red stars.

4.1.2 Noise Removal

Data captured by an accelerometer always consists of vibra-
tion signature and intrinsic noise introduced by internal

electromagnetic components. In Fig. 9, it’s visible that an
accelerometer continuously bulks out non-zero amplitude
samples (noise) even during an idle period. In this section,
we employ the multi-resolution characteristic of DWT to
remove noise in frequency bands. It can analyze signals in
multiple frequency scales and effectively remove noise com-
ponents while retaining needed ones [35], [36]. DWT
divides sensed vibration data (i.e., yðtÞ) into two parts,
approximate coefficients (i.e., wj) corresponding to low-fre-
quency bands and detail coefficients (i.e., uj) corresponding
to high-frequency bands

wj ¼ 2�j=2

Z
yðtÞ’ð2�jt� 2 kÞdt; (6)

uj ¼ 2�j=2

Z
yðtÞcð2�jt� 2 kÞdt; (7)

where ’ð�Þ and cð�Þ are scaling and wavelet functions
respectively. j is a scaling parameter and k is movement
step. Especially, the low-frequency band can be divided
multiple times, for obtaining approximate coefficients at
varied scales. In HandKey, we represent original vibration
data using seven frequency scales with considering actual
denoising performance. The physical contact of hand and
door makes them enjoy large coefficients in resonance fre-
quency scales/bands [37] while background noise owns
small ones. To filter out noise and preserve important vibra-
tion features, we select a dynamic threshold on the basis
of [38] and then coefficients lower than it will be set up to
zero on each scale. Finally, denoised data yðtÞ on jth scale is
reconstructed through rescaled discrete orthogonal func-
tions (i.e., hð�Þ and gð�Þ) and corresponding coefficients

yjðtÞ ¼
X
k

hðn� 2 kÞwjþ1 þ
X
k

gðn� 2 kÞujþ1; (8)

where wjþ1 and ujþ1 are corrected approximate coefficients
and detail coefficients on ðjþ 1Þth scale respectively. In
Fig. 10, we present five vibration signal segments and their
denoising versions from the same user. Clearly, denoising
module makes these waveforms more consistent, confirm-
ing the effectiveness of the proposed DWT-based method.

4.2 Basic Feature Extraction

In this section, we first extract linear features in time-fre-
quency domain relying on vibration mechanism of the
hand-door oscillator. Specially, we employ a PCA approach
to reduce the dimension of the MFCC-based linear features.
We further design a VAE encoder to explore non-linear fea-
tures derived from hand structure. In short, linear features
outline the basic characteristics of vibration signal and the
learning-based non-linear part further explores latent hand
structure attributes; they apparent complement each other.

Fig. 8. Knocking event (a) and vibration signal segmentation (b).

Fig. 9. Sensed vibration data in knocking and idle periods.
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4.2.1 Linear Time-Frequency Features

For each hand-door oscillator, there are four main structure
parameters affecting vibration signatures: mass m, spring
constant s, damper coefficient c and attenuation coefficient
m. These parameters jointly determine duration time kkkkkkk,
amplitude range &&&&&&& and attenuation degree ttttttt of a oscillator’s
reciprocating motion. For instance, if they have larger val-
ues, the duration time kkkkkkk of vibration become short. To
explicitly describe the extraction process of the three fea-
tures, we present part of vibration signature in Fig. 11 as an
example. HandKey first detects extreme points (e.g., r1 and
r2) marked with green triangles, which are boundary points
of peaks. There are three peaks in this case, i.e., gr1r2r3,gr3r4r5, and gr5r6r7. Then we leverage maximum horizontal
and vertical range distances of peaks to represent k ¼
fk1; k2; k3g and & ¼ f&1; &2; &3g respectively. Vibration
attenuation degree � is defined as f&2

&1
; &3
&1
g. Subsequently,

nearest-neighbor interpolation [39] is employed to align fea-
ture vectors to a fixed length (i.e., the maximum number of
peaks in registered signatures). Moreover, we calculate
mean, variance, skewness, kurtosis, and form factor [40] to
present the global characteristic of each signature.

Learned from Section 2.2, the frequency-domain energy
distribution of vibration signature across users are unique.
Therefore, we leverage MFCCs to further represent spec-
trum differences among signatures. It’s widely utilized to
extract subtle spectrum pattern variations of time series
data. Unlike applying MFCC to the speech recognition field,
we needn’t transform vibration signal into mel spectrum
scale in HandKey. In our case, time frame of each knocking
event is 100 ms and frame-shifting step is set as 25 ms. Fur-
thermore, we calculate the delta and delta-delta of MFCCs
to sense the dynamic characteristics of vibration signals.
Finally, we obtain a feature vector with 1215 elements. Nev-
ertheless, directly utilizing MFCC-based features of such a
huge dimension to construct the following behavior-inde-
pendent signature extraction model undoubtedly results in
limited computing resource’s curse. Fortunately, we dis-
cover that spectrum powers of partial frequency bands are
repeatedly counted by multiple triangular filters, thus lead-
ing to information redundancy within initial MFCCs.

To compress MFCC-based features and completing
dimension reduction, we resort to PCA [41] filtering out
superfluous information. Its essence is to leverage a set
of orthogonal components in a low-dimensional space
for representing high-dimensional features while avoids
losing critical characteristics. PCA is always employed to
dimension reduction, benefiting from its low computa-
tion cost and without complex parameter setting. We use

matrix Ag1�g3 to save g3 (i.e., 1215) dimension features
extracted from g1 vibration signatures, then apply Singu-
lar Value Decomposition (SVD) [42] to decompose it into
three submatrices: row matrix Ug1�g2 , diagonal matrix
Qg2�g2 , and column matrix VT

g2�g3

Ag1�g3 ¼ Ug1�g2 �Qg2�g2 �VT
g2�g3

: (9)

The singular values in Qg2�g2 is denoted as fr1; r2; . . .; rGg.
We then select the columns of VT

g2�g3
corresponding to top-

G singular values in Qg2�g2 , and obtain the principal compo-
nent Ag1�G from original features

A
g1�G

¼ Ag1�g2 �Vg2�G (10)

In our system, we set G for compressing the original feature
intoG dimensions. The value ofG is selected with satisfying
the following demand

argmin G

�����XG
i¼1

wi

�XG
i¼1

ri > #

( )
(11)

The # is set as an empirical value 0.92, which is determined
to balance the trade-off between unlocking accuracy and
time-consuming, referring to system performance evalua-
tion Section 6.6. Moreover, we find that singular value dis-
tributions of MFCC-based features and orderings of their
principal components are distinguishable. The view is con-
sistent with the above analysis, that is, the resonance fre-
quency distribution of each hand-door oscillator is unique.

4.2.2 Non-Linear Feature Extraction

Learning-basedmodels holding a huge superiority inmining
latent non-linear characteristics of samples, are regarded as
effective tools for feature extraction [43]. In particular, VAE
only requires a small size dataset for completing feature
extractor training and hence being widely acclaimed; it can
effectively capture numerical distributions of key parame-
ters determining sample generation. In HandKey, we apply
VAE to extract latent structure parameters (e.g., mass and
spring constant) of the hand-door oscillator from vibration
signatures. The VAE model consists of three sub-modules
presented in Fig. 12. Each vibration signature yðtÞ ¼
½y1ðtÞ; y2ðtÞ; � � �ylðtÞ� feeding into VAE and then the specific
numerical distribution of each latent parameter is ascer-
tained through an encoder.

Subsequently, a compressed latent parameter vector of
structure z ¼ ½z1; z2; � � �z‘� is obtained; a decoder recon-
structs input signature relying on z thereby outputting
ŷðtÞ ¼ ½ŷ1ðtÞ; ŷ2ðtÞ; � � �ŷlðtÞ�. Essentially, the process of encod-
ing and decoding on vibration signatures prompts VAE’s
latent parameter layers to possess the power that representing

Fig. 10. Original signals (a) and noise removal version (b).

Fig. 11. Extracting time-domain features in three peaks.
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the nonlinear characteristics of each hand-door oscillator
structure. To empower our VAE, two goals require to be fol-
lowed duringmodel training phase: (1)minimizing the recon-
struction loss between yðtÞ and ŷðtÞ to ensure latent
parameters correctly representing vibration signature; (2) pro-
moting the underlying distribution quðzjyðtÞÞ of latent param-
eters to move closer the normal one, hence preventing from
model over-fitting and parameter space irregularity. Refer-
ring to [44], the two goals can be formulated as following loss
function

Lð�qu; qf; yðtÞÞ ¼ DKLðqfðzjyðtÞÞjj�quðzÞÞ þ kyðtÞ � ŷðtÞk2; (12)

where DKL is Kullback-Leibler divergence measuring the
difference between two probability distributions. �quðzÞ is
the prior standard normal distribution Nð0; 1Þ and jj � jj2
is the L2 norm to present reconstruction loss of input and
output signatures. In HandKey, the number of neurons con-
tained in VAE’s three modules is (64, 64, 32), (24, 12), and
(32, 64, 64) respectively. Its detailed inputting data collec-
tion, and parameter settings (e.g., weight decay ratio and
optimizer) in the training process are consistent with the fol-
lowing behavior-independent signature extraction module.

4.3 Behavior-Independent Signature

Knocking behaviors of the same user between registration
and identity authentication phases are not identical, induc-
ing signature similarity decrease and hence the success ratio
of authentication. To make unlocking scheme practical, the
final signature extracted byHandKey should both effectively
distinguish users and resist interference from user behavior
changes. In this section, we construct Triplet model [18] as
the behavior-independent signature extraction tool employ-
ing LeNet [17] network which is a typical learning-based
approach to extracting condensed features of input images.
The essence of Triplet model is to restore similar parts of
features from the same user and simultaneously amplify
differences across users. To be specific, this model makes
Intra-PCCs much larger than Inter-PCCs even if knocking
behavior changes, hence ensuring unlocking accuracy. As
shown in Fig. 13, the Triplet consists of three sub-modules
sharing identical weights. fnneg; nanc; nposg is a 3-tuple including
three feature vectors as the basic inputting unit. Therein, nanc

and npos from the same legitimate (positive) user; the former
acts as the newly sensed authentication signature feature

and the latter is the registered feature template to represent
user identity; while nneg is a randomly selected one from other
(negative) person. To reduce the loss of feature vectors nanc

and npos while make nneg far away from them, we leverage the
following function [45] controlling weight update in each
iteration

L̂ ¼ maxðjjnanc � nposjj2 � jjnanc � nnegjj2þa; 0Þ; (13)

where a is a margin threshold that is enforced between posi-
tive and negative pairs.

For filtering out behavior interference, the training pro-
cess of Triplet model is elaborately designed. We let arbi-
trary twenty users knock on random fifteen positions of
the pre-set knocking area, with three force ranges (i.e.,
small, medium, and large). Each user offers ten vibration
signatures in one position-force combination, with a total
of 450 (i.e., 15� 3� 10). HandKey then extracts 214-ele-
ment feature vector from each original signature, that is, 89
elements from time domain, 113 ones of compressed
MFCCs, and the remaining part generated by our VAE-
based extractor. In the following, successive “0” is filled at
the end of feature vectors, for shaping them into 15� 15
matrices inputting LeNet models. Especially, the pairing
scheme of input vector tuples is critical to guide the Triplet
model extracting behavior-independent signatures. In
HandKey, there are two types of input pair: nneg and npos

have similar knocking behaviors while nanc is not; nneg and
nanc have similar knocking behaviors while npos is not. In this
scheme, the model can learn to ignore behavioral differen-
ces in vibration samples from the same user and just
focuses on hand-dependent features. When iterating, the
amount of data in each batch is 32. The weight decay ratio
is set to 0.01 and the number of parameters updated in
each iteration is randomly selected 50%. Moreover, each
parameter’s optimization strategy is set as Adam opti-
mizer [46] and the maximum number of training iteration
is 106 until the loss stabilizes.

4.4 Identity Authentication

In the registration phase, a user u knocks on a door to gener-
ate vibration signature nposu as his/her identity template.
HandKey then reuses the feature vectors from other users
who participated in training Triplet model as the negative
templates nnegu . Both templates are then stored in our data-
base. Upon authenticating user u, HandKey obtains a newly
sensed signature nancu , thereby constructing a 3-tuple (i.e.,
fnnegu ; nancu ; nposu g) by combining it with the saved identity
template and a negative one. Subsequently, this feature 3-

Fig. 12. The VAE model containing three sub-modules: encoder, latent
parameter layer, and decoder.

Fig. 13. The structure of HandKey’s LeNet-based Triplet model.
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tuple is fed into the trained Triplet model for verifying user
identity. HandKey could repeat the above process for form-
ing multiple 3-tuples by traversing all nnegu and apply a stan-
dard voting mechanism on all classification results to judge
nancu ’s authenticity. However, we only randomly choose 32
3-tuples in a batch in order to strike a balance between
computational cost and authentication security. Finally, if
more than a half tuples’ knancu � nposu k less than knancu � nnegu k,
the newly sensed signature is more similar to the registered
identity template and hence the user is accepted, otherwise
rejected.

5 IMPLEMENTATION

The devices used in the following experiments have shown
in Fig. 14. Users knock on the door and piezoelectric/BU-
27135 sensors sense vibration data in real-time. We leverage
BU-27135 for vibration collection in the feasibility study and
verifying experiment due to its high sensitivity with a sam-
pling frequency of up to 10 kHz. In the following, a Shenz-
hou notebook with an Intel i5-8400 CPU, GeForce GTX1060
6 G GPU, and 16 G RAM, is denoted as a processing unit to
receive vibration signature by the serial interface. The Jet-
Brains PyCharm 2019 software is applied to analyze and
process the sensed data. In HandKey, signal preprocessing
and signature extraction modules are both completed in the
notebook. Arduino UNO receives an authentication result
(i.e, locking/unlocking) and then controls the motor con-
troller to implement it. We recruit 47 users (18 females and
29 males) denoted as U1; U2; . . .U47 aged from 21 to 43 for
evaluating our system. HandKey is built on three types of
doors (i.e., wood, aluminum, zinc) and three gestures (i.e.,
Gesture� 1, Gesture� 2, and Gesture� 3), respectively. In
default, users knock the pre-set knocking area thirty times
on each door with habitual forces, by the right hand using
Gesture� 1. Moreover, the dataset verifying the impacts of
specific parameters and unlocking security under potential
attacks is customized.

6 PERFORMANCE EVALUATION

In this section, we evaluate HandKey’s performance under
practical scenarios. Before diving into experiment details,
we first discuss basic metrics for evaluation. As identity ver-
ification is a binary classification problem, there are four
basic cases related to authentication result, namely true pos-
itive (TP), true negative (TN), false positive (FP), and false

negative (FN). To comprehensivelymeasure the performance
of HandKey, we use False Accept Rate (FAR), False Reject
Rate (FRR), Precision, and Accuracy as evaluation metrics.
Basically FAR ¼ FP

FPþTN measures the ratio of an authentica-
tion system incorrectly accepting illegitimate users. FRR ¼

FN
FNþTP shows the ratio of incorrectly rejecting legitimate user.
Moreover, Precision ¼ TP

TPþFP measures the overall system
performance, while Accuracy ¼ TPþTN

TPþTNþFPþFN is the ratio of
samples being correctly classified. A secure and effective
unlocking system should have low values of FAR and FRR,
and high values of Precision andAccuracy.

6.1 Overall Performance

We select one user (e.g., U1) as the legitimate user who has
registered personal identity information in HandKey, and
other users (e.g., U2; . . .U47) play the role of illegitimate ones.
Following the cross-validation principle, every user is treated
as the legitimate user in turn and we finally obtain a total of
47 authentication results from all users. In the following, we
input sensed vibration signatures into the trained model and
count the correct verification ratio of these positive and nega-
tive samples. The cumulative distribution function of all
users’ FARs and FRRs are shown in Fig. 15a. Averaging val-
ues of the two metrics are 1.87% and 2.72% respectively.
From the result, we conclude that HandKey incorrectly veri-
fies the identity of users at a low ratio. Moreover, the unlock-
ing performances of three types of doors are verified. In
Fig. 15b, we see that there are negligible differences in Preci-
sion (97.71%) andAccuracy (97.37%)when knocking on three
doors respectively, and their averaging values are 97.54%.
The result indicates that door materials almost don’t affect
unlocking performance that is consistent with our analysis in
the feasibility study. Therefore, signature differences among
users are mainly caused by hand structure; regardless of
door materials, a hand can still ensure the structure unique-
ness of the hand-door oscillator.

6.2 Impact of Knocking Trial Times

Existing unlocking systems acquiescently allow users to con-
tinuously authenticate/input identity information five times
until unlocking. If identity verification still fails for the fifth
time, systemswill be locked over awhile. Therefore, the ratio
of users successfully passing authenticationwithin five times
reflects unlocking effectiveness. In this section, we present
changes in HandKey performance within the maximum
number of knocking trials from one to five. As illustrated in
Fig. 16, four metrics are continuously optimized as the num-
ber of trials increases. Especially, at the fifth trial, FRR is

Fig. 14. The experiment setup of HandKey.

Fig. 15. Results in (a) show low incorrect unlocking rates among all
users. (b) Presents stable unlocking performance when implementing
HandKey on three different doors.
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decreased to 1.15%meaning that HandKey unlocks the door
when the legitimate user knockswith high accuracy.

6.3 Impact of Behavior-Independent Signature

During user registration and identity authentication phases,
knocking behaviorsmay be various, hence causing similarity
decreasing of vibration signatures from the same user. To
relieve the interference of knocking position and force varia-
tion, HandKey extracts behavior-independent signatures by
the LeNet-based Triplet model as described in Section 4.3.
We evaluate HandKey performance changes caused by sus-
pending this model and directly judge user identity using
initial linear and non-linear features. As shown in Fig. 17, the
value of FRRwhen feeding behavior-independent signatures
into the trained model is 1.87% which is much less than
29.05% without applying the Triplet model. In this case,
legitimate users are misidentified at a high rate. Moreover,
the FAR increases to 7.14% when behavioral interference
isn’t properly processed, which means the signature unique-
ness among individuals is compromised. The result verifies
that behavior-independent signatures extracted in HandKey
are effective, that can enhance unlocking convenience and
ensure signature distinctiveness among users.

6.4 Impact of Registration Data Size

HandKey has trained VAE-based feature extractor and
Triplet model relying on a pre-collected dataset. For adapt-
ing the model to a specific person, newly registered users
should input their vibration signatures for adding personal
identity information to the trained extractor and Triplet
model. If an unlocking system requires collecting a large
amount of registered data to extract identity information, it
undoubtedly compromises user experiences. Therefore, the
desired system should construct a model for security
authentication by as few registered signatures as possible.
In this section, we employ different sizes of registration
data to evaluate HandKey’s performance. Users knock on
the door from 5 to 35 times respectively for model construc-
tion. As shown in Fig. 18, when the number of knocking
times reaches 20, HandKey shows excellent performance
with 2.16% FAR and 3.41% FRR. This result indicates that

users can complete the data registration by inputting just a
few vibration signatures that spending within one minute.

6.5 Impact of Knocking Hand

Due to differences in personal habits, some users may
choose to knock utilizing right hands while the others lever-
age left ones. Relative positions between two hands and the
pre-set knocking area are distinct, thus sensed vibration sig-
natures of them are different. In this section, we explore
unlocking performances by employing two hands to regis-
ter information respectively. Ten random users participate
in this experiment and they knock fifty times with each
hand using habitual forces on the wood door. 50% data is
used for training our model and the other tests unlocking
performance. As shown in Fig. 19, HandKey’s performances
of knocking by two hands are both satisfactory. To be spe-
cific, their averaging values of Precision and Accuracy are
respectively greater than 98% and 96%. It shows that two
hands can generate unique signatures for representing user
identity.

6.6 Impact of Dimension Reduction Threshold

To remove redundant information of original MFCC-based
features, we leverage the PCA-based approach to complete
dimension reduction in Section 4.2.1. A small threshold #
means that only fewer features are retained, and the proba-
bility of losing important information representing user
identity is increased. Therefore, choosing a proper # is criti-
cal to HandKey’s unlocking performance. In the following,
we explore the change tendencies of FRR and FAR when
adjusting # from 0.1 to 1. The averaging values of them as
illustrated in Fig. 20. We see that the smallest FAR is
obtained when # is set as 0.92, and the corresponding FRR
is below 2.75%. In this case, HandKey can ensure legitimate
users successfully access and effectively resist potential
attacks, thus the default value of # is 0.92.

6.7 Impact of Wearing Accessory

Some users are accustomed to wearing watches, smart bra-
celets, gloves, and other wearable devices. These accessories
may indirectly affect the overall structure of the hand-door

Fig. 16. Unlocking performance with trials from one to five.

Fig. 17. Unlocking performance with/without using behavior-independent
signatures.

Fig. 18. The impact of registration data size on FAR and FRR.

Fig. 19. Unlocking performance when knocking with right/left hand.
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oscillator. To verify the impact of wearing them, we collect
vibration signatures when users wear a TISSOT watch with
60 g, a Huawei bracelet with 30 g, and a glove with general
thickness respectively. Subsequently, all signatures are fed
into the trained model constructed by non-wearing acces-
sory registration data. As shown in Fig. 21, wearing a glove
on hand owns a few larger FRR (6.83%) compared with a
bracelet/watch on the wrist. We summarize the reasons for
FRR increasing as follows: gloves cover an entire hand and
hence slightly change the oscillator structure. As the above
analysis, the vibration signature generation and propaga-
tion strongly depend on oscillator structure, thus changing
this structure doubtlessly affects the signature and hence
performance in FRR; otherwise, it would allow attacks to
easily fake a legitimate user. In HandKey, by designing the
behavior-independent signature extraction module, the
FRR caused by wearing gloves is 6.83% which is satisfactory
and reasonable.

6.8 Impact of Knocking Gestures

HandKey supports users to choose personal favorite ges-
tures instead of just the fixed one to represent identity infor-
mation and unlocking inner doors. In this section, we
evaluate HandKey’s unlocking performance using three
common gestures. The results are illustrated in Fig. 22 pre-
senting that Gesture� 1 presents a better unlocking accuracy
compared with the other two gestures. In general, they all
offer satisfactory performance with Precision larger than
97%. We summarize the reason for performance differences
caused by gestures as follows: a large contact area between
a hand and the pre-set knocking area enables the hand
structure to have more effects on vibration generation and
propagation. Therefore, we recommend that users choose
accustomed gestures for data registration while increasing
the contact area as much as possible.

6.9 The Stability of Vibration Signature

Vibration signature stability across a long-term span is one
critical indicator for measuring unlocking performance. If
one user’s signatures significantly change over time, it inev-
itably causes a high probability of failure authentication

and hence compromising user experience. For verifying sig-
nature stability, we record the unlocking performance of
users after completing the initial registration, as the time
interval increases from half a month to three months. In the
following, the averaging authentication performance of
each period is presented in Fig. 23. The result indicates that
even if the time span between registration and authentica-
tion phases is up to three months, HandKey still keeps a sat-
isfactory performance of recognizing legitimate users with a
small FRR increasing of 0.14%. Thus, we conclude that the
vibration signature is stable enough to ensure the unlocking
performance of HandKey.

6.10 Unlocking Security Under Attacks

In this section, we evaluate the unlocking security of Hand-
Key under three potential attacks that are zero-effort, imita-
tion, and side-channel. In the first type, all users are divided
into two parts, thirty of them as legitimate users registering
personal information in HandKey, and other ones are
attackers. We ask each attacker to output fifty vibration sig-
natures from random knocking forces and positions. Sensed
signatures then are compared with the registered ones to
obtain feature similarities and hence judge identity. The
averaging ratio (i.e., FAR of 1.53%) of misjudging these ille-
gitimate is presented in Fig. 24. To implement the imitation
attack, we select eight users to combine four legality-attack
pairs. Two users belonging to the same pair have the most
similar hand shapes among 47 users. One person in the pair
acts as a registered user, and the other is denoted as an
attacker who observes and practices to imitate legitimate
users’ knocking behaviors. We obtain fifty vibration signa-
tures from each attacker, and the averaging FAR is 2.04%.
The experiment results present that imitation attack doesn’t
cause obvious changes in the misclassification rate (i.e.,
FAR) of negative samples, with an increase only of 0.17%
compared to the baseline 1.87%.

The side-channel attack with a complex design seems to
have powerful destructive capabilities but lacks practicality.
The reasons behind this view are as follows: First, the vast
majority of doors are flat and unobstructed. If attackers
deploy malicious sensors within human visible ranges (e.g.,

Fig. 20. Adjusting dimension reduction threshold to evaluate unlocking
performance.

Fig. 21. Comparing FRRs when users wearing different accessories.

Fig. 22. Unlocking using three common gestures.

Fig. 23. FRRs under distinct time spans.
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around the pre-set knocking area), they can be easily
detected by users. Second, assuming a sensor placing in the
lower half of doors that are far away from the knocking
position, sensed signals are severely distorted and become
invalid. We place an accelerometer at 30 cm, 50 cm, and
70 cm away from the preset knocking area to collect vibra-
tion signals and then observe their differences with the
legitimate user signature. As illustrated in Fig. 25b, at a dis-
tance greater than 30 cm, sensed signal energy is low and its
waveform greatly differs from the legitimate signature. The
result indicates that malicious attackers cannot steal signa-
tures matching the identity of legitimate users, and thus are
unable to carry out further attacks. We ask ten users to
knock on doors fifty times and collect vibration signals at
the above-mentioned positions in real-time. The trained
model then verifies their identity and none of the recorded
vibration signals can spoof HandKey i.e., FAR ¼ 0.

6.11 Time Latency and Hardware Cost

InHandKey, vibration signal first is sensed by the accelerom-
eter, then transmitted to the computer completing further
data processing. Without considering data communication,
we focus on the time taken for performing authentication
action. For HandKey, models such as the PCA-based dimen-
sion reduction, VAE-based feature extractor, and LeNet-
based Triplet network are trained offline. Therefore, the
main time-consuming parts are noise removal and original
feature extraction. We input twenty vibration signatures of
each user into our model and record the running time of two
data processing parts. The time costs of them are 0:64�
0:29 s and 0:81� 0:24 s respectively. Generally, HandKey
can achieve a satisfactory running speed for unlocking.

The total hardware cost of HandKey prototype is 72.9
dollars and its sub-module costs termwise lie in Table 1. We
also count the selling prices of the top-50 popular smart
locks on the Amazon website [47]; their average price is up
to 157 dollars more than the twice of HandKey. Relying on

these statistics, the fact is displayed that the cost of Hand-
Key is indeed low. Moreover, smart lock manufacturers
leveraging HandKey as the prototype can massively pro-
duce these modules to further compress costs. Thus, the
estimated cost for HandKey could be significantly reduced.

7 LIMITATION AND FUTURE WORK

In this section, we review the keyless unlocking system
HandKey, mainly including the limitations that need to be
further solved and outlook for system performance improve-
ment in the future work.

The size of HandKey’s prototype needs to further dwin-
dle. Current data sensing/processing modules of HandKey
are scattered, hence owning a large size. We should inte-
grate all modules into a small unit that is convenient for
installation and usage. Nevertheless, it is a technical prob-
lem rather than related to academic research. For manufac-
turers, producing a market-oriented smart lock utilizing
unique vibration signatures is easy to achieve. In the next
version, we will try to compress current prototype size to
facilitate rapid deployment.

We consider combining HandKey with existing “keys”
(e.g., fingerprint and face) in a conjunctive manner to fur-
ther facilitate (hand-)disabled users. In this manner, Hand-
Key allows users to flexibly select appropriate unlocking
ways on account of actual demands. Nevertheless, we must
prudently handle the tradeoff between convenience and
security under such a setting, since there are intrinsic draw-
backs in combined keys as stated in Section 1. Therefore, for
unlocking the inner door, whether enabling the conjunctive
mechanism needs careful consideration.

Moreover, we explore utilizing vibration signatures con-
structs an authentication approach applying to hand-hold-
ing mobile devices like smartphones. In this case, the hand
and a smartphone can be regarded as an oscillator. When a
finger touches the screen, the oscillator can generate hand-
specific vibration signals triggered by touching forces; mean-
while, a built-in accelerometer on smartphones senses it in
real-time. During the interaction of finger and device, the
user identity can be continuously tracked, thereby ensuring
system security in the entire service session.

8 RELATED WORK

In this section, we revisit previous efforts on user authenti-
cation and unlocking systems. Moreover, we present the
difference of HandKey compared with them.

8.1 Unlocking Using Physical Key and Magnetic
Card

Traditional physical keys are made of metals or magnetic
cards [1], [2]. The key is regarded as an identity token, and
its holder can unlock a specific lock and enter private

Fig. 24. FARs under potential attacks.

Fig. 25. Implementing the side-channel attack. (a) Illustrates the three
positions placing an accelerometer. (b) shows sensed vibration signals
in four data collection positions when the user knocks on the door.

TABLE 1
The Detailed Cost of Each Module of HandKey Prototype

Module Name Arduino
ATmega328

Elprico
Relay

Abovehill
Motor&Power

Sensor Fittings Total
Cost

Unit Price($) 22.8 8.1 18.4 17.2 6.4 72.9
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spaces. However, physical keys exist inherent shortcom-
ings: first, due to strict correspondence between key and
lock, the user who possesses permissions to enter multiple
personal areas, needs to carry a bunch of keys. Without a
doubt, this is a terrible experience for most users. Second,
forgetting and losing keys inevitably happen in daily
life [7]. In this case, locks must be quickly replaced, hence
leading to usage cost and security risk increasing [48].
Third, metal keys are prone to rust and plastic cards may be
accidentally degaussed [49]. When jagged parts of a key are
deformed, users lose permission to unlock doors. All the
above three issues inevitably compromise user experience
and personal security.

8.2 Unlocking Door in a Keyless Way

To enhance convenience of unlocking ways, smart locks [50]
are emerging and given high hope. It allows unlocking a
door by verifying pre-stored identity information without
carrying any physical keys. Earlier appeared keyless schemes
require users to enter Personal Identification Numbers
(PINs) [51] and graphical patterns [52] for identity verifica-
tion. However, the password-based approaches can be easily
peeked by someone close [3] and vulnerable to side-channel
attack [9]. Followed by that, biometrics are leveraged to rep-
resent user identity and unlocking permission, including,
among others, fingerprint [53], face [54], and voice [55],
teeth [56]. But constructing door entry systems relying on
these traits also faces major obstacles in deployment, due to
the high cost of non-trivial sensors. For instance, FaceID [10]
captures facial 3D features using customized flood illumina-
tors and dot projectors; Qualcomm Fingerprint Sensor [11]
leverages extraordinary ultrasonic readers to scan the pores
of users’ fingers. Moreover, their flaws are continuously dis-
covered by researchers. To be specific, exquisitely designed
masks can deceive most face recognition systems [57] and
voice authentication always incorrectly rejects unlocking of
legitimate users under ambient noise interference.

8.3 Vibration-Based Authentication and Unlocking

Some advanced works are devoted to exploring unique
vibration patterns generated by users to authenticate iden-
tity. For example, [12], [13], [31] show the feasibility of distin-
guishing users employing vibration features of arms and
fingers stimulated by a motor, while HandPass [58] just
applicable for mobile scenarios. Therein, [12] and [13]
require users either to wear a wristband or to hold a smart-
phone for capturing vibration patterns, thus they are mobile-
customized and not suitable for implementing keyless
unlocking. Users leveraging VibWrite [31] paint specific
graphic patterns on a vibrating panel with fingers for verify-
ing identity, which increases user intervention. Moreover,
they require motors to impose active high-frequency vibra-
tion that may weaken user-friendliness. Taprint [32] regards
hands as virtual number keyboards and supports text input-
ting by tapping finger knuckles. It argues that captured
sensed vibration features can distinguish users and tapping
positions, thereby achieving secure inputting. Nevertheless,
it needs users to actively calibrate the system to relieve the
interference of variable tapping behaviors. Some emerging
authentication approaches leverage vibration patterns

relying on knocking behaviors (e.g., Thumprint [59], Aware-
LESS [60], andKeyClick [61]) to distinguish users. But behav-
ior-based traits can be easily controlled and changed by
subjective factors, thereby leading to identity feature changes
and failed authentication.

Different from the above methods, HandKey captures
unique vibration signatures when a hand knocks on doors
in a natural (passive) way, which offers users excellent
experiences. We adequately explore the effects of dominat-
ing factors such as knocking gesture and door material on
vibration signatures, making HandKey more practical. In
the following, we extract behavior-independent signatures
leveraging a LeNet-based Triplet model, hence presenting
the essential hand structural property even if knocking
behaviors change.

9 CONCLUSION

In this article, we have proposed a keyless unlocking sys-
tem HandKey that employs the unique vibration signature
generated by the hand-door oscillator. HandKey offers a
low-cost, user-friendliness, and secure unlocking scheme
implemented on inner doors. It leverages only a common
accelerometer to complete vibration signal reception. To
effectively represent the unique signature and solve the
interference brought by variable knocking behavior, we
have elaborately designed corresponding strategies. For
instance, we first extracted linear features by analyzing the
vibration mechanism in time and frequency domains;
we employed a VAE-based model to capture hidden non-
linear features. Subsequently, we leveraged the LeNet-
based Triplet model to resolve the effects of knocking
behavior variation, thereby obtaining behavior-indepen-
dent signatures. Finally, we have evaluated the authentica-
tion performance by conducting extensive experiments;
the promising results have proved a 1.87% FAR and a
97.71% Accuracy. Benefiting from the lightweight mode,
HandKey could achieve large-scale deployment to provide
users with effective unlocking services on inner doors.
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